metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

catena-Poly[[zinc(II)-bis[μ -1,3-bis-(imidazol-1-ylmethyl)benzene- $\kappa^2 N^3$: $N^{3'}$]] dinitrate methanol solvate]

Liliana Dobrzańska

Department of Chemistry, University of Stellenbosch, Private Bag X1, Matieland, South Africa Correspondence e-mail: lianger@sun.ac.za

Received 1 October 2009; accepted 2 October 2009

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.005 Å; *R* factor = 0.056; *wR* factor = 0.121; data-to-parameter ratio = 16.5.

In the title coordination compound, $[[Zn(C_{14}H_{14}N_4)_2](NO_3)_2 - CH_3OH]_n$, the cationic complex forms a looped chain containing 24-membered M_2L_2 rings. The ligand adopts two distinct conformations that are alternated in subsequent loops. The Zn^{II} ion displays a slightly distorted tetrahedral geometry being coordinated by four N atoms from four 1,3-bis(imidazol-1-ylmethyl)benzene ligands. The nitrate ions and methanol solvent molecules are located between adjacent doublestranded chains and participate in an extensive net of O– $H \cdots O$ and C– $H \cdots O$ hydrogen bonds. The resulting threedimensional assembly is further stabilized by π - π interactions between benzene rings [centroid–centroid distances = 3.878 (2) and 3.853 (2) Å].

Related literature

For earlier studies on metal complexes of ditopic imidazolebased ligands, see: Dobrzańska *et al.* (2006, 2007). For similar one-dimensional double-stranded motifs formed with the title ligand, see: Li & Du (2006), Dobrzańska *et al.* (2008). For Zn-N distances in related tetrahedral zinc(II) complexes, see: Hoskins *et al.* (1997); Chawla *et al.* (2006).

 $\gamma = 87.476 \ (4)^{\circ}$

Z = 2

T = 100 K

 $R_{\rm int}=0.063$

V = 1526.0 (6) Å³

Mo $K\alpha$ radiation $\mu = 0.87 \text{ mm}^{-1}$

 $0.21 \times 0.10 \times 0.10 \text{ mm}$

17638 measured reflections

7036 independent reflections

4891 reflections with $I > 2\sigma(I)$

Experimental

Crystal data

 $[Zn(C_{14}H_{14}N_4)_2](NO_3)_2 \cdot CH_4O$ $M_r = 698.02$ Triclinic, $P\overline{1}$ a = 9.880 (2) Å b = 12.711 (3) Å c = 13.127 (3) Å a = 68.798 (4)° $\beta = 83.167$ (4)°

Data collection

Bruker APEX CCD area-detector diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 1997) T_{min} = 0.838, T_{max} = 0.918

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.056$ 426 parameters $wR(F^2) = 0.121$ H-atom parameters constrainedS = 1.08 $\Delta \rho_{max} = 0.65$ e Å $^{-3}$ 7036 reflections $\Delta \rho_{min} = -0.71$ e Å $^{-3}$

Table 1

Selected geometric parameters (Å, °).

Zn1—N1	1.985 (3)	$\begin{array}{c} Zn1\!-\!N35^i\\ Zn1\!-\!N17^{ii} \end{array}$	1.989 (3)
Zn1—N19	1.986 (3)		2.009 (3)
N1-Zn1-N19	109.85 (11)	${f N1-Zn1-N17^{ii}}\ {f N19-Zn1-N17^{ii}}\ {f N35^i-Zn1-N17^{ii}}$	107.39 (10)
N1-Zn1-N35 ⁱ	114.88 (11)		110.59 (11)
N19-Zn1-N35 ⁱ	106.22 (10)		107.91 (11)

Symmetry codes: (i) -x, -y, -z + 1; (ii) -x + 1, -y + 1, -z.

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
O46−H46…O38 ⁱⁱⁱ	0.84	1.96	2.755 (4)	157
C2-H2···O38	0.95	2.40	3.240 (4)	148
C2-H2···O40	0.95	2.54	3.420 (4)	154
C4—H4···O44	0.95	2.28	3.216 (5)	171
C6−H6 <i>B</i> ···O43	0.99	2.33	3.164 (4)	141
C8−H8···O46 ^{iv}	0.95	2.54	3.432 (5)	157
$C13 - H13B \cdots O38^{v}$	0.99	2.57	3.350 (5)	136
$C20-H20\cdots O42^{ii}$	0.95	2.30	3.085 (4)	139
$C20-H20\cdots O44^{ii}$	0.95	2.30	3.207 (5)	160

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C22-H22\cdots O40^{i}$	0.95	2.47	3.385 (4)	162
$C24 - H24B \cdot \cdot \cdot O39^{i}$	0.99	2.51	3.379 (5)	147
$C28-H28\cdots O42^{vi}$	0.95	2.59	3.368 (4)	139
$C31-H31A\cdots O46^{vi}$	0.99	2.42	3.324 (4)	151
$C31 - H31B \cdots O43^{vi}$	0.99	2.49	3.396 (4)	151
$C33-H33\cdots O43^{vi}$	0.95	2.57	3.313 (5)	135
$C36-H36\cdots O40^{i}$	0.95	2.27	3.135 (4)	151
$C10-H10\cdots Cg1^{v}$	0.95	2.79	3.539 (4)	136
$C15-H15\cdots Cg2^{v}$	0.95	2.85	3.762 (4)	162

Symmetry codes: (i) -x, -y, -z + 1; (ii) -x + 1, -y + 1, -z; (iii) x + 1, y, z; (iv) x - 1, y, z; (v) -x, -y + 1, -z; (vi) x - 1, y, z + 1. Cg1 and Cg2 are the centroids of the N1–C5 and C25–C30 rings, respectively.

Data collection: *SMART* (Bruker, 2001); cell refinement: *SAINT* (Bruker, 2002); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *X-SEED* (Barbour 2001); software used to prepare material for publication: *SHELXL97*.

The author wishes to thank the National Research Foundation of South Africa and the University of Stellenbosch for financial support. Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2574).

References

- Barbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.
- Bruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2002). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chawla, S. K., Arora, M., Nättinen, K. & Rissanen, K. (2006). Mendeleev Commun. 16, 88–90.
- Dobrzańska, L., Kleinhans, D. & Barbour, L. J. (2008). New J. Chem. 32, 813-819.
- Dobrzańska, L., Lloyd, G. O. & Barbour, L. J. (2007). New J. Chem. 31, 669-676.
- Dobrzańska, L., Lloyd, G. O., Esterhuysen, C. & Barbour, L. J. (2006). Angew. Chem. Int. Ed. 45, 5856–5859.
- Hoskins, B. F., Robson, R. & Slizys, D. A. (1997). Angew. Chem. Int. Ed. 36, 2336–2338.
- Li, T. & Du, S.-W. (2006). Acta Cryst. E62, m1933-m1935.
- Sheldrick, G. M. (1997). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Acta Cryst. (2009). E65, m1326-m1327 [doi:10.1107/S1600536809040203]

catena-Poly[[zinc(II)-bis[μ -1,3-bis(imidazol-1-ylmethyl)benzene- $\kappa^2 N^3$: N^3 ']] dinitrate methanol solvate]

L. Dobrzanska

Comment

During the course of ongoing studies on metal complexes of ditopic imidazole based ligands (Dobrzańska et al., 2007; Dobrzańska et al., 2006) the title coordination compound (I) was isolated. It consists of infinite cationic double-stranded chains running parallel to [-1 - 1 1], nitrate counterions and methanol molecules. An interesting feature of I is the presence of two different conformers of the 1,3-bis(imidazol-1-ylmethyl)benzene ligand in the asymmetric unit simultaneously with N3-C6-C13-N14 and N21-C24-C31-N32 torsion angles of 70.4 (2) and 12.2 (3)°, respectively. These ligands are bridging Zn^{II} centres by imidazole N-atoms to form cationic looped chains, whereby each loop consists of only one type of conformers (Fig. 1), leading to alternating Zn...Zn distances with values of 9.930 (2) and 9.952 (2) Å. Similar one-dimensional double-stranded motifs were observed in the case of Cu(II) complexes with the same ligand and counterions such as Cl⁻, Br⁻, NO₃⁻ (see compounds 2, 3, 6, 7 in Dobrzańska et al., 2008) and for a Cd(II) complex with Cl⁻ counterions (Li & Du, 2006). However, in none of these cases two distinct conformers of the ligand were present in a single chain. Furthermore it is worth noting that the corresponding N—C—C—N torsion angles for these reported compounds never exceeded 30°. Each zinc(II) ion in the chain shows a slightly deformed tetrahedral geometry with N-Zn-N bond angles in the range of 106.22 (10) - 114.88 (11)° (Table 1). Zn—N bond lengths are in good agreement with those reported for related tetrahedral zinc(II) complexes (Hoskins et al., 1997; Chawla et al., 2006). The position of the imidazole units in the M_2L_2 rings prevents accommodating any guest molecules inside of the ring spaces formed. Thus nitrate counterions and methanol molecules occupy the spaces between adjacent chains. Both have all of their oxygen atoms participating in an extensive net of hydrogen bonds (Table 2) leading to the formation of a three-dimensional assembly, further stabilized by C—H··· π (Table 2) and π - π stacking interactions between benzene rings from adjacent chains [symmetry code: -x, 1 - y, -z, centroid-centroid distance = 3.878(2) Å with ca 1.05 Å slippage for ring C7—C12 and symmetry code: -x, 1 - y, 1 - z, centroid-centroid distance = 3.853 (2) Å with *ca* 2.13 Å slippage for ring C25—C30] (Fig. 2).

Experimental

A methanolic solution of $Zn(NO_3)_2$ '4H₂O was added to a methanolic solution of 1,3-bis(imidazol-1-ylmethyl)benzene in a 1:2 molar ratio. Colorless crystals suitable for single-crystal X-ray diffraction were obtained by slow evaporation.

Refinement

H atoms were positioned geometrically, with C—H = 0.95 (aromatic), 0.98 (methyl), 0.99 (methylene) and O—H = 0.84 Å, and refined as riding on their parent atoms with $U_{iso}(H) = 1.5U_{eq}(C)$ for methyl H and $1.2U_{eq}(C,O)$ for all other H.

Figures

Fig. 1. Fragment of an infinite cationic chain, with the atom-numbering scheme. The alternating loops, represented in red and blue, are formed by different conformations of the ligand [symmetry codes:(i) -x, -y, -z + 1; (ii) -x + 1, -y + 1, -z]. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2. Packing diagram of (I) viewed down [010] showing an extensive net of hydrogen bonds (red dashed lines). Blue dashed lines show π - π stacking interactions.

catena-Poly[[zinc(II)-bis[μ -1,3-bis(imidazol-1-ylmethyl)benzene- $\kappa^2 N^3$: $N^{3'}$]] dinitrate methanol solvate]

Crystal data

Z = 2 $F_{000} = 724$
$F_{000} = 724$
$D_{\rm x} = 1.519 {\rm ~Mg~m}^{-3}$
Mo K α radiation, $\lambda = 0.71073$ Å
Cell parameters from 2070 reflections
$\theta = 2.7 - 22.5^{\circ}$
$\mu = 0.87 \text{ mm}^{-1}$
T = 100 K
Needle, colorless
$0.21\times0.10\times0.10~mm$

Data collection

Bruker APEX CCD area-detector diffractometer	7036 independent reflections
Radiation source: fine-focus sealed tube	4891 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.063$
T = 100 K	$\theta_{\text{max}} = 28.3^{\circ}$
ω scans	$\theta_{\min} = 1.7^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1997)	$h = -12 \rightarrow 13$
$T_{\min} = 0.838, T_{\max} = 0.918$	$k = -16 \rightarrow 16$
17638 measured reflections	$l = -17 \rightarrow 16$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.056$	H-atom parameters constrained
$wR(F^2) = 0.121$	$w = 1/[\sigma^2(F_o^2) + (0.0416P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.08	$(\Delta/\sigma)_{max} < 0.001$
7036 reflections	$\Delta \rho_{max} = 0.65 \text{ e } \text{\AA}^{-3}$
426 parameters	$\Delta \rho_{\rm min} = -0.71 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct	Extinction correction: none

Special details

methods

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Z	$U_{\rm iso}*/U_{\rm eq}$
Zn1	0.43395 (4)	0.12561 (3)	0.25919 (3)	0.01622 (12)
N1	0.3848 (3)	0.2295 (2)	0.1144 (2)	0.0172 (6)
C2	0.2852 (3)	0.2180 (3)	0.0597 (3)	0.0180 (7)
H2	0.2209	0.1582	0.0862	0.022*
N3	0.2878 (3)	0.3026 (2)	-0.0382 (2)	0.0176 (6)
C4	0.3955 (3)	0.3723 (3)	-0.0473 (3)	0.0200 (8)
H4	0.4232	0.4385	-0.1081	0.024*
C5	0.4534 (3)	0.3278 (3)	0.0471 (3)	0.0203 (8)
Н5	0.5292	0.3587	0.0649	0.024*
C6	0.1934 (3)	0.3149 (3)	-0.1206 (3)	0.0192 (7)
H6A	0.1495	0.2411	-0.1038	0.023*
H6B	0.2467	0.3349	-0.1938	0.023*
C7	0.0831 (3)	0.4031 (3)	-0.1262 (2)	0.0175 (7)
C8	-0.0524 (3)	0.3711 (3)	-0.1108 (3)	0.0201 (8)
H8	-0.0750	0.2939	-0.0912	0.024*
C9	-0.1554 (3)	0.4517 (3)	-0.1239 (3)	0.0225 (8)
Н9	-0.2480	0.4291	-0.1134	0.027*
C10	-0.1240 (3)	0.5641 (3)	-0.1520 (3)	0.0206 (8)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

H10	-0.1949	0.6186	-0.1616	0.025*
C11	0.0113 (3)	0.5976 (3)	-0.1663 (3)	0.0181 (7)
C12	0.1146 (3)	0.5170 (3)	-0.1536 (3)	0.0167 (7)
H12	0.2072	0.5395	-0.1635	0.020*
C13	0.0391 (3)	0.7214 (3)	-0.1923 (3)	0.0219 (8)
H13A	-0.0297	0.7668	-0.2391	0.026*
H13B	0.0268	0.7363	-0.1227	0.026*
N14	0.1753 (3)	0.7599 (2)	-0.2481 (2)	0.0188 (6)
C15	0.2255 (3)	0.7660 (3)	-0.3530 (3)	0.0205 (8)
H15	0.1792	0.7456	-0.4026	0.025*
C16	0.3531 (3)	0.8065 (3)	-0.3707 (3)	0.0204 (8)
H16	0.4130	0.8197	-0.4363	0.025*
N17	0.3835 (3)	0.8258 (2)	-0.2793 (2)	0.0169 (6)
C18	0.2732 (3)	0.7968 (3)	-0.2072 (3)	0.0169 (7)
H18	0.2649	0.8017	-0.1362	0.020*
N19	0.2938 (3)	0.1338 (2)	0.3779 (2)	0.0176 (6)
C20	0.2854 (3)	0.2185 (3)	0.4147 (3)	0.0198 (8)
H20	0.3369	0.2862	0.3822	0.024*
N21	0.1943 (3)	0.1956 (2)	0.5041 (2)	0.0167 (6)
C22	0.1401 (3)	0.0908 (3)	0.5265 (3)	0.0202 (8)
H22	0.0735	0.0522	0.5852	0.024*
C23	0.2015 (3)	0.0539 (3)	0.4475 (3)	0.0196 (7)
H23	0.1837	-0.0161	0.4411	0.024*
C24	0.1613 (3)	0.2702 (3)	0.5671 (3)	0.0190 (7)
H24A	0.2286	0.3324	0.5423	0.023*
H24B	0.1679	0.2270	0.6460	0.023*
C25	0 0206 (3)	0 3190 (3)	0 5531 (3)	0.0162.(7)
C26	-0.0099(3)	0 3968 (3)	0.4524 (3)	0.0102(7)
H26	0.0578	0.4180	0.3909	0.021*
C27	-0.1391 (3)	0.4432 (3)	0.4423 (3)	0.0203 (8)
H27	-0.1592	0.4966	0.3735	0.024*
C28	-0.2397(3)	0.4131 (3)	0.5309(3)	0.021
H28	-0.3283	0.4452	0 5229	0.022*
C29	-0.2097(3)	0.3357 (3)	0.6314 (3)	0.022
C30	-0.0793(3)	0.3337(3)	0.6311(3)	0.0172(7)
H30	-0.0589	0.2359	0.7110	0.021*
C31	-0.3188(3)	0.2959 (3)	0.7283 (3)	0.021
H31A	-0.2757	0.2690	0.7976	0.0120 (0)
H31B	-0.3799	0.3596	0.7286	0.024
N32	-0.3991(3)	0.2038 (2)	0.7218 (2)	0.024
C33	-0.5207(3)	0.2030(2)	0.6789 (3)	0.0104(0) 0.0208(8)
Н33	-0.5734	0.2135 (3)	0.6523	0.0208 (8)
C34	-0.5507 (3)	0.1099 (3)	0.6821 (3)	0.025
H3/	-0.6304	0.1077	0.6587	0.0207(0)
N35	-0.4477(3)	0.0362(2)	0.7246 (2)	0.025
C36	-0.3570(3)	0.0302(2)	0.7270(2)	0.0101(0)
UJ0 H36	-0 2749	0.0972 (3)	0.7400 (3)	0.0192 (7)
N37	-0.0133(3)	0.0163 (2)	0.1673 (2)	0.023° 0.023(7)
038	0.0155(5)	0.0105(2)	0.1075(2)	0.0224(7)
050	0.0007 (3)	0.00/1 (2)	0.07002 (17)	0.0270 (0)

O39	-0.1117 (3)	-0.0482 (2)	0.1936 (2)	0.0395 (7)
O40	0.0674 (2)	0.01307 (19)	0.23517 (19)	0.0248 (6)
N41	0.4830 (3)	0.5500 (2)	-0.3360 (2)	0.0205 (6)
O42	0.5282 (2)	0.6026 (2)	-0.43384 (19)	0.0270 (6)
O43	0.4038 (2)	0.46743 (19)	-0.31273 (19)	0.0266 (6)
O44	0.5162 (3)	0.5791 (2)	-0.26093 (19)	0.0345 (7)
C45	0.6595 (4)	0.0513 (3)	0.0162 (3)	0.0327 (9)
H45A	0.6559	0.0261	0.0964	0.049*
H45B	0.6676	-0.0144	-0.0065	0.049*
H45C	0.5760	0.0929	-0.0074	0.049*
O46	0.7728 (3)	0.1219 (2)	-0.0325 (2)	0.0484 (8)
H46	0.8413	0.0930	-0.0003	0.058*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Zn1	0.0157 (2)	0.0134 (2)	0.0171 (2)	-0.00014 (15)	-0.00078 (15)	-0.00285 (16)
N1	0.0146 (15)	0.0137 (15)	0.0216 (15)	-0.0018 (11)	-0.0005 (12)	-0.0046 (12)
C2	0.0216 (18)	0.0119 (17)	0.0161 (17)	-0.0010 (14)	0.0006 (14)	-0.0003 (14)
N3	0.0173 (15)	0.0160 (15)	0.0179 (15)	-0.0024 (12)	-0.0008 (12)	-0.0041 (12)
C4	0.0194 (18)	0.0161 (18)	0.0201 (18)	-0.0039 (14)	-0.0003 (15)	-0.0013 (15)
C5	0.0158 (18)	0.0198 (19)	0.0246 (19)	-0.0047 (14)	-0.0024 (15)	-0.0064 (15)
C6	0.0249 (19)	0.0137 (17)	0.0191 (18)	-0.0034 (14)	-0.0049 (15)	-0.0051 (14)
C7	0.0206 (18)	0.0186 (18)	0.0109 (16)	0.0003 (14)	-0.0019 (14)	-0.0024 (14)
C8	0.0243 (19)	0.0181 (18)	0.0185 (18)	-0.0061 (15)	-0.0018 (15)	-0.0067 (15)
C9	0.0169 (18)	0.028 (2)	0.0231 (19)	-0.0066 (15)	-0.0003 (15)	-0.0096 (16)
C10	0.0206 (19)	0.0217 (19)	0.0189 (18)	0.0037 (15)	-0.0021 (15)	-0.0069 (15)
C11	0.0202 (18)	0.0156 (17)	0.0175 (18)	-0.0029 (14)	0.0015 (14)	-0.0054 (14)
C12	0.0123 (16)	0.0185 (18)	0.0169 (17)	-0.0058 (14)	0.0019 (13)	-0.0040 (14)
C13	0.0152 (18)	0.0197 (19)	0.027 (2)	-0.0040 (14)	0.0032 (15)	-0.0053 (16)
N14	0.0172 (15)	0.0155 (15)	0.0228 (16)	-0.0005 (12)	-0.0008 (12)	-0.0061 (12)
C15	0.026 (2)	0.0167 (18)	0.0176 (18)	-0.0014 (15)	0.0008 (15)	-0.0063 (15)
C16	0.0238 (19)	0.0176 (18)	0.0187 (18)	-0.0044 (15)	-0.0006 (15)	-0.0050 (15)
N17	0.0167 (15)	0.0140 (14)	0.0187 (15)	-0.0013 (12)	-0.0017 (12)	-0.0044 (12)
C18	0.0169 (18)	0.0159 (17)	0.0171 (18)	0.0009 (14)	-0.0015 (14)	-0.0050 (14)
N19	0.0164 (15)	0.0132 (14)	0.0206 (15)	-0.0011 (12)	-0.0018 (12)	-0.0031 (12)
C20	0.0206 (19)	0.0159 (18)	0.0179 (18)	-0.0004 (14)	0.0011 (14)	-0.0011 (15)
N21	0.0141 (14)	0.0157 (15)	0.0197 (15)	0.0008 (11)	-0.0010 (12)	-0.0060 (12)
C22	0.0179 (18)	0.0193 (18)	0.0187 (18)	-0.0077 (14)	0.0012 (14)	-0.0014 (15)
C23	0.0218 (19)	0.0141 (17)	0.0211 (18)	-0.0037 (14)	-0.0029 (15)	-0.0034 (14)
C24	0.0191 (18)	0.0177 (18)	0.0191 (18)	-0.0015 (14)	-0.0023 (14)	-0.0049 (15)
C25	0.0194 (18)	0.0141 (17)	0.0184 (18)	-0.0009 (14)	-0.0020 (14)	-0.0096 (14)
C26	0.0192 (18)	0.0198 (18)	0.0152 (17)	-0.0046 (14)	0.0018 (14)	-0.0080 (14)
C27	0.030 (2)	0.0141 (17)	0.0196 (18)	-0.0021 (15)	-0.0082 (16)	-0.0068 (15)
C28	0.0182 (18)	0.0129 (17)	0.0263 (19)	0.0018 (14)	-0.0081 (15)	-0.0079 (15)
C29	0.0188 (18)	0.0114 (16)	0.0205 (18)	-0.0047 (14)	-0.0007 (14)	-0.0074 (14)
C30	0.0204 (18)	0.0150 (17)	0.0166 (17)	0.0024 (14)	-0.0046 (14)	-0.0055 (14)
C31	0.0206 (18)	0.0153 (18)	0.0244 (19)	-0.0003 (14)	-0.0029 (15)	-0.0087 (15)

0.0135 (14)	0.0112 (14)	0.0207 (15)	0.0005 (11)	0.0000 (11)	-0.0018 (12)
0.0156 (18)	0.0154 (18)	0.029 (2)	0.0008 (14)	-0.0051 (15)	-0.0037 (15)
0.0136 (17)	0.0181 (18)	0.028 (2)	0.0016 (14)	-0.0071 (15)	-0.0035 (15)
0.0136 (14)	0.0140 (14)	0.0174 (15)	0.0001 (11)	-0.0007 (11)	-0.0022 (12)
0.0176 (18)	0.0168 (18)	0.0218 (18)	0.0023 (14)	-0.0037 (14)	-0.0049 (15)
0.0184 (16)	0.0176 (16)	0.0290 (18)	-0.0002 (13)	0.0004 (13)	-0.0067 (14)
0.0385 (16)	0.0260 (14)	0.0173 (13)	-0.0122 (12)	-0.0016 (11)	0.0024 (11)
0.0284 (15)	0.0386 (17)	0.0384 (17)	-0.0185 (13)	-0.0050 (12)	0.0042 (13)
0.0211 (13)	0.0266 (14)	0.0258 (14)	0.0013 (11)	-0.0074 (11)	-0.0069 (11)
0.0179 (16)	0.0152 (15)	0.0276 (17)	0.0027 (12)	-0.0045 (13)	-0.0065 (13)
0.0277 (14)	0.0302 (15)	0.0194 (13)	-0.0086 (11)	0.0036 (11)	-0.0052 (11)
0.0231 (14)	0.0199 (13)	0.0327 (15)	-0.0074 (11)	-0.0049 (11)	-0.0033 (11)
0.0516 (18)	0.0274 (15)	0.0214 (14)	-0.0173 (13)	-0.0071 (13)	-0.0023 (12)
0.028 (2)	0.043 (3)	0.030 (2)	-0.0095 (19)	0.0003 (17)	-0.0171 (19)
0.0335 (17)	0.0474 (19)	0.0427 (18)	-0.0130 (15)	-0.0140 (14)	0.0139 (14)
	0.0135 (14) 0.0156 (18) 0.0136 (17) 0.0136 (14) 0.0176 (18) 0.0184 (16) 0.0385 (16) 0.0284 (15) 0.0211 (13) 0.0179 (16) 0.0277 (14) 0.0231 (14) 0.0516 (18) 0.028 (2) 0.0335 (17)	$\begin{array}{llllllllllllllllllllllllllllllllllll$	0.0135 (14) $0.0112 (14)$ $0.0207 (15)$ $0.0156 (18)$ $0.0154 (18)$ $0.029 (2)$ $0.0136 (17)$ $0.0181 (18)$ $0.028 (2)$ $0.0136 (14)$ $0.0140 (14)$ $0.0174 (15)$ $0.0176 (18)$ $0.0168 (18)$ $0.0218 (18)$ $0.0184 (16)$ $0.0176 (16)$ $0.0290 (18)$ $0.0385 (16)$ $0.0260 (14)$ $0.0173 (13)$ $0.0284 (15)$ $0.0386 (17)$ $0.0384 (17)$ $0.0211 (13)$ $0.0266 (14)$ $0.0258 (14)$ $0.0179 (16)$ $0.0152 (15)$ $0.0276 (17)$ $0.0231 (14)$ $0.0199 (13)$ $0.0327 (15)$ $0.0516 (18)$ $0.0274 (15)$ $0.0214 (14)$ $0.028 (2)$ $0.043 (3)$ $0.030 (2)$ $0.0335 (17)$ $0.0474 (19)$ $0.0427 (18)$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Geometric parameters (Å, °)

Zn1—N1	1.985 (3)	N21—C22	1.375 (4)
Zn1—N19	1.986 (3)	N21—C24	1.471 (4)
Zn1—N35 ⁱ	1.989 (3)	C22—C23	1.357 (5)
Zn1—N17 ⁱⁱ	2.009 (3)	С22—Н22	0.9500
N1—C2	1.327 (4)	С23—Н23	0.9500
N1—C5	1.391 (4)	C24—C25	1.501 (4)
C2—N3	1.342 (4)	C24—H24A	0.9900
С2—Н2	0.9500	C24—H24B	0.9900
N3—C4	1.381 (4)	C25—C30	1.386 (4)
N3—C6	1.473 (4)	C25—C26	1.393 (4)
C4—C5	1.348 (4)	C26—C27	1.382 (4)
C4—H4	0.9500	C26—H26	0.9500
С5—Н5	0.9500	C27—C28	1.388 (4)
С6—С7	1.517 (4)	С27—Н27	0.9500
С6—Н6А	0.9900	C28—C29	1.387 (4)
С6—Н6В	0.9900	C28—H28	0.9500
С7—С8	1.386 (4)	C29—C30	1.396 (4)
C7—C12	1.400 (4)	C29—C31	1.513 (4)
С8—С9	1.391 (5)	С30—Н30	0.9500
С8—Н8	0.9500	C31—N32	1.476 (4)
C9—C10	1.380 (4)	C31—H31A	0.9900
С9—Н9	0.9500	C31—H31B	0.9900
C10-C11	1.392 (4)	N32—C36	1.331 (4)
C10—H10	0.9500	N32—C33	1.368 (4)
C11—C12	1.394 (4)	C33—C34	1.352 (4)
C11—C13	1.516 (4)	С33—Н33	0.9500
C12—H12	0.9500	C34—N35	1.378 (4)
C13—N14	1.467 (4)	C34—H34	0.9500
C13—H13A	0.9900	N35—C36	1.325 (4)
C13—H13B	0.9900	N35—Zn1 ⁱ	1.989 (3)

N14—C18	1.338 (4)	С36—Н36	0.9500
N14—C15	1.383 (4)	N37—O39	1.234 (3)
C15—C16	1.345 (4)	N37—O40	1.253 (3)
C15—H15	0.9500	N37—O38	1.260 (3)
C16—N17	1.377 (4)	N41—O42	1.251 (3)
С16—Н16	0.9500	N41—O44	1.252 (3)
N17—C18	1.325 (4)	N41—O43	1.261 (3)
$N17 - 7n1^{ii}$	2.009 (3)	C45—O46	1.404 (4)
C18—H18	0 9500	С45—Н45А	0 9800
N19—C20	1 327 (4)	C45—H45B	0.9800
N19—C23	1.382 (4)	C45—H45C	0.9800
C20—N21	1.340 (4)	O46—H46	0.8400
C20—H20	0.9500		
N1—Zn1—N19	109.85 (11)	N19—C20—H20	124.6
N1—Zn1—N35 ⁱ	114.88 (11)	N21—C20—H20	124.6
N19—Zn1—N35 ⁱ	106.22 (10)	C20—N21—C22	108.1 (3)
N1—Zn1—N17 ⁱⁱ	107.39 (10)	C20—N21—C24	125.2 (3)
N19—Zn1—N17 ⁱⁱ	110.59 (11)	C22—N21—C24	126.7 (3)
N35 ⁱ —Zn1—N17 ⁱⁱ	107.91 (11)	C23—C22—N21	105.8 (3)
C2—N1—C5	105.9 (3)	С23—С22—Н22	127.1
C2—N1—Zn1	127.9 (2)	N21—C22—H22	127.1
C5—N1—Zn1	126.2 (2)	C22—C23—N19	109.6 (3)
N1—C2—N3	110.8 (3)	С22—С23—Н23	125.2
N1—C2—H2	124.6	N19—C23—H23	125.2
N3—C2—H2	124.6	N21—C24—C25	111.6 (3)
C2—N3—C4	107.7 (3)	N21—C24—H24A	109.3
C2—N3—C6	125.1 (3)	C25—C24—H24A	109.3
C4—N3—C6	127.2 (3)	N21—C24—H24B	109.3
C5—C4—N3	106.4 (3)	C25—C24—H24B	109.3
C5—C4—H4	126.8	H24A—C24—H24B	108.0
N3—C4—H4	126.8	C30—C25—C26	119.4 (3)
C4—C5—N1	109.3 (3)	C30—C25—C24	119.7 (3)
C4—C5—H5	125.4	C26—C25—C24	120.8 (3)
N1—C5—H5	125.4	C27—C26—C25	119.8 (3)
N3—C6—C7	114.4 (3)	С27—С26—Н26	120.1
N3—C6—H6A	108.7	С25—С26—Н26	120.1
С7—С6—Н6А	108.7	C26—C27—C28	121.1 (3)
N3—C6—H6B	108.7	С26—С27—Н27	119.5
С7—С6—Н6В	108.7	С28—С27—Н27	119.5
Н6А—С6—Н6В	107.6	C29—C28—C27	119.3 (3)
C8—C7—C12	119.2 (3)	C29—C28—H28	120.3
C8—C7—C6	119.0 (3)	С27—С28—Н28	120.3
С12—С7—С6	121.6 (3)	C28—C29—C30	119.8 (3)
C7—C8—C9	120.2 (3)	C28—C29—C31	120.9 (3)
С7—С8—Н8	119.9	C30—C29—C31	119.2 (3)
С9—С8—Н8	119.9	C25—C30—C29	120.6 (3)
С10—С9—С8	120.5 (3)	С25—С30—Н30	119.7

С10—С9—Н9	119.7	С29—С30—Н30	119.7
С8—С9—Н9	119.7	N32—C31—C29	110.5 (3)
C9—C10—C11	120.1 (3)	N32—C31—H31A	109.6
С9—С10—Н10	120.0	C29—C31—H31A	109.6
C11—C10—H10	120.0	N32—C31—H31B	109.6
C10-C11-C12	119.5 (3)	С29—С31—Н31В	109.6
C10-C11-C13	117.6 (3)	H31A—C31—H31B	108.1
C12—C11—C13	122.9 (3)	C36—N32—C33	107.8 (3)
C11—C12—C7	120.5 (3)	C36—N32—C31	125.1 (3)
C11—C12—H12	119.8	C33—N32—C31	126.7 (3)
C7—C12—H12	119.8	C34—C33—N32	106.2 (3)
N14—C13—C11	114.8 (3)	С34—С33—Н33	126.9
N14—C13—H13A	108.6	N32—C33—H33	126.9
C11—C13—H13A	108.6	C33—C34—N35	109.4 (3)
N14—C13—H13B	108.6	С33—С34—Н34	125.3
C11—C13—H13B	108.6	N35—C34—H34	125.3
H13A—C13—H13B	107.6	C36—N35—C34	105.5 (3)
C18—N14—C15	107.4 (3)	C36—N35—Zn1 ⁱ	127.8 (2)
C18—N14—C13	126.2 (3)	C34—N35—Zn1 ⁱ	126.6 (2)
C15—N14—C13	126.3 (3)	N35—C36—N32	111.1 (3)
C16—C15—N14	106.2 (3)	N35—C36—H36	124.4
С16—С15—Н15	126.9	N32—C36—H36	124.4
N14—C15—H15	126.9	O39—N37—O40	121.2 (3)
C15-C16-N17	109.6 (3)	O39—N37—O38	119.7 (3)
C15—C16—H16	125.2	O40—N37—O38	119.2 (3)
N17—C16—H16	125.2	O42—N41—O44	120.1 (3)
C18—N17—C16	106.0 (3)	O42—N41—O43	120.1 (3)
C18—N17—Zn1 ⁱⁱ	128.5 (2)	O44—N41—O43	119.8 (3)
C16—N17—Zn1 ⁱⁱ	125.3 (2)	O46—C45—H45A	109.5
N17—C18—N14	110.8 (3)	O46—C45—H45B	109.5
N17—C18—H18	124.6	H45A—C45—H45B	109.5
N14—C18—H18	124.6	O46—C45—H45C	109.5
C20—N19—C23	105.7 (3)	H45A—C45—H45C	109.5
C20—N19—Zn1	123.2 (2)	H45B—C45—H45C	109.5
C23—N19—Zn1	130.5 (2)	C45—O46—H46	109.5
N19—C20—N21	110.7 (3)		
N19—Zn1—N1—C2	-71.8 (3)	N1—Zn1—N19—C20	-76.4 (3)
$N35^{i}$ —Zn1—N1—C2	47.8 (3)	N35 ⁱ —Zn1—N19—C20	158.8 (2)
N17 ⁱⁱ —Zn1—N1—C2	167.8 (3)	N17 ⁱⁱ —Zn1—N19—C20	41.9 (3)
N19—Zn1—N1—C5	111.3 (3)	N1—Zn1—N19—C23	113.2 (3)
N35 ⁱ —Zn1—N1—C5	-129.0 (3)	N35 ⁱ —Zn1—N19—C23	-11.6 (3)
N17 ⁱⁱ —Zn1—N1—C5	-9.0 (3)	N17 ⁱⁱ —Zn1—N19—C23	-128.4 (3)
C5—N1—C2—N3	0.5 (4)	C23—N19—C20—N21	0.7 (4)
Zn1—N1—C2—N3	-176.8 (2)	Zn1—N19—C20—N21	-171.7 (2)
N1—C2—N3—C4	0.2 (4)	N19-C20-N21-C22	-0.2 (4)
N1—C2—N3—C6	178.8 (3)	N19-C20-N21-C24	178.8 (3)
C2—N3—C4—C5	-0.9 (4)	C20—N21—C22—C23	-0.4 (4)

G()12 G1 G5	170 4 (2)	G04 N01 G00 G00	170 4 (2)	
C6—N3—C4—C5	-179.4(3)	C24—N21—C22—C23	-179.4 (3)	
N3—C4—C5—N1	1.2 (4)	N21—C22—C23—N19	0.8 (4)	
C2—N1—C5—C4	-1.1 (4)	C20—N19—C23—C22	-1.0 (4)	
Zn1—N1—C5—C4	176.3 (2)	Zn1—N19—C23—C22	170.7 (2)	
C2—N3—C6—C7	103.5 (4)	C20-N21-C24-C25	110.3 (3)	
C4—N3—C6—C7	-78.2 (4)	C22—N21—C24—C25	-70.9 (4)	
N3—C6—C7—C8	-122.9 (3)	N21-C24-C25-C30	113.7 (3)	
N3—C6—C7—C12	61.3 (4)	N21—C24—C25—C26	-68.3 (4)	
C12—C7—C8—C9	0.9 (5)	C30-C25-C26-C27	0.0 (5)	
C6—C7—C8—C9	-175.0 (3)	C24—C25—C26—C27	-178.0 (3)	
C7—C8—C9—C10	-0.2 (5)	C25-C26-C27-C28	-0.3 (5)	
C8—C9—C10—C11	-0.7 (5)	C26—C27—C28—C29	0.4 (5)	
C9-C10-C11-C12	0.9 (5)	C27—C28—C29—C30	-0.2 (5)	
C9—C10—C11—C13	-177.4 (3)	C27—C28—C29—C31	-176.6 (3)	
C10-C11-C12-C7	-0.2 (5)	C26—C25—C30—C29	0.1 (5)	
C13-C11-C12-C7	178.0 (3)	C24—C25—C30—C29	178.2 (3)	
C8—C7—C12—C11	-0.7 (5)	C28—C29—C30—C25	0.0 (5)	
C6—C7—C12—C11	175.1 (3)	C31—C29—C30—C25	176.4 (3)	
C10-C11-C13-N14	-156.9 (3)	C28—C29—C31—N32	83.1 (4)	
C12-C11-C13-N14	24.9 (5)	C30-C29-C31-N32	-93.3 (3)	
C11-C13-N14-C18	-114.6 (4)	C29—C31—N32—C36	76.8 (4)	
C11-C13-N14-C15	66.3 (4)	C29—C31—N32—C33	-95.7 (4)	
C18—N14—C15—C16	0.2 (4)	C36—N32—C33—C34	1.5 (4)	
C13—N14—C15—C16	179.4 (3)	C31—N32—C33—C34	175.1 (3)	
N14—C15—C16—N17	0.0 (4)	N32—C33—C34—N35	-1.1 (4)	
C15—C16—N17—C18	-0.2 (4)	C33—C34—N35—C36	0.3 (4)	
C15—C16—N17—Zn1 ⁱⁱ	174.8 (2)	C33—C34—N35—Zn1 ⁱ	-176.7 (2)	
C16—N17—C18—N14	0.3 (3)	C34—N35—C36—N32	0.7 (4)	
Zn1 ⁱⁱ —N17—C18—N14	-174.5 (2)	Zn1 ⁱ —N35—C36—N32	177.6 (2)	
C15—N14—C18—N17	-0.3 (4)	C33—N32—C36—N35	-1.4 (4)	
C13—N14—C18—N17	-179.6 (3)	C31—N32—C36—N35	-175.1 (3)	
Symmetry codes: (i) $-x, -y, -z+1$; (ii) $-x+1, -y+1, -z$.				

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D\!\!-\!\!\mathrm{H}^{\ldots}\!A$
O46—H46…O38 ⁱⁱⁱ	0.84	1.96	2.755 (4)	157
С2—Н2…О38	0.95	2.40	3.240 (4)	148
С2—Н2…О40	0.95	2.54	3.420 (4)	154
C4—H4…O44	0.95	2.28	3.216 (5)	171
С6—Н6В…О43	0.99	2.33	3.164 (4)	141
C8—H8····O46 ^{iv}	0.95	2.54	3.432 (5)	157
C13—H13B…O38 ^v	0.99	2.57	3.350 (5)	136
C20—H20…O42 ⁱⁱ	0.95	2.30	3.085 (4)	139
C20—H20…O44 ⁱⁱ	0.95	2.30	3.207 (5)	160
C22—H22···O40 ⁱ	0.95	2.47	3.385 (4)	162
C24—H24B···O39 ⁱ	0.99	2.51	3.379 (5)	147

C28—H28····O42 ^{vi}	0.95	2.59	3.368 (4)	139
C31—H31A···O46 ^{vi}	0.99	2.42	3.324 (4)	151
C31—H31B···O43 ^{vi}	0.99	2.49	3.396 (4)	151
C33—H33····O43 ^{vi}	0.95	2.57	3.313 (5)	135
C36—H36····O40 ⁱ	0.95	2.27	3.135 (4)	151
C10—H10····Cg1 ^v	0.95	2.79	3.539 (4)	136
C15—H15…Cg2 ^v	0.95	2.85	3.762 (4)	162

Symmetry codes: (iii) x+1, y, z; (iv) x-1, y, z; (v) -x, -y+1, -z; (ii) -x+1, -y+1, -z; (i) -x, -y, -z+1; (vi) x-1, y, z+1.

Fig. 1

